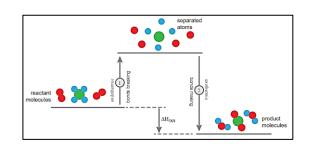

N4 – Thermochemistry – Heat of Formation


Practice #1 - Calculate △H for the combustion of methane, CH₄ CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(I)

<u>Formula</u>	<u>∆H</u> _f (kJ)
CH4	-74.80
02	0
CO ₂	-393.50
H ₂ O	-285.83

<u>Practice</u> #2 - Ethanol is used as an additive in many fuels today. What is ΔH°_{rxn} (kJ) for the combustion of ethanol? **2** C₂H₅OH (*I*) + 6 O₂ (*g*) \rightarrow 4 CO₂ (*g*) + 6 H₂O (*I*)

Formula	∆ <i>H</i> ⁰ _f
C₂H₅OH (/)	-277.6
CO ₂ (g)	-393.5
H₂O (<i>g</i>)	-241.8
H ₂ O (/)	-285.8

<u>Practice #3</u> – What is the enthalpy of formation for the equation below, using the table of bond energies provided.

Sir	ngle i	Bond	Ene	rgies	(kJ/1)	mol d	f bon	nds)	
	Η	С	Ν	0	S	F	Cl	Br	I
Η	436								
С	413	346							
Ν	391	305	163						
0	463	358	201	146					
s	347	272	_	_	226				
\mathbf{F}	565	485	283	190	284	155			
Cl	432	339	192	218	255	253	242		
Br	366	285	_	201	217	249	216	193	
I	299	213	_	201	_	278	208	175	151
Multiple Bond Energies (kJ/mol of bonds)									
C=C 602 C			C=N	615		C=0	D 799		
C≡C 835 C			C≡N	887		C≡C	O 107	$^{\prime 2}$	
Ν	=N 4	118]	N=O	607				
N≡N 945 O=O 498									
_									

N3 – Thermochemistry – Hess's Law

Definitions				
<u>Hess's Law</u>				
"In going from a particular set of	reactants to a			
particular set of products, the cha	inge in enthalpy is			
the same whether the reaction takes place in one step				
or a series of steps."				
Add Reactions	+ ∆H's			
Multiplying a Rxn by a factor	$x \Delta H$ by the factor			
Reversing a Rxn	- ΔH			
(opposite sign, not necessarily	a negative value)			
<u>Standard State</u>				

- Pure gas at 1 atm pressure
- Pure solid or liquid in its most stable form at 1 atm, and temp of interest (usually 25°C)
- Substances in a solution with a [] of 1M

Hess's Law #1

#	Reaction	ΔH°
1	$C + 2H_2 \rightarrow CH_4$	-74.80 kJ
2	$C + O_2 \rightarrow CO_2$	-393.50 kJ
3	$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$	-285.83 kJ

Hess's Law #2

Hess's Law #3

Rxn #1) 3Fe₂O₃ + CO (g) → 2Fe₃O₄ + CO₂ (g) ∆H°= -47 kJ

Rxn #2) Fe₂O₃ + 3CO (g) → 2Fe (s) + 3CO₂ (g) ∆H°= -25 kJ

Rxn #3) Fe₃O₄ + CO (g) → 3FeO (s) + CO₂ (g) ΔH°= 19 kJ

You should notice that I put these in backwards order. That makes it easier to cut them out without the whole thing falling out of your binder!

N2 – Thermochemistry – A Review

Some Background Knowledge Definitions			
Not all the definitions from the notes – you still have to take notes!			
Energy – capacity to do work or produce heat			
Potential Energy – due to position or composition			
Kinetic Energy - due to motion			
Electrical Energy – flow of electrical charge			
Thermal Energy – molecular motion			
Light/Radiant Energy – energy transitions in an atom			
Nuclear Energy – potential energy in atomic nuclei			
Chemical Energy – due to structure of atoms/bonds			
Law of Conservation of Energy –			
cannot create or destroy energy			
1 st Law of Thermodynamics –			
total energy content of universe is constant			
State Function –			
depends only on present state, not pathway to get there			

ſ	Endothermic								
ſ	-					-			

Lidotterine						
System absorbs energy	Surroundings release energy					
System energy increases	Surrounding energy decreases					
+ q _{system} - q _{surroundings}						
If you touch the container YOU feel cold – the system is						
taking heat away from YOU! Your thermometer is in the						
SURROUNDINGS so the temperature it reads decreases!						

Exothermic					
System releases energy	Surroundings gain energy				
System energy decreases	Surrounding energy increases				
- q _{system}	+ Qsurroundings				
If you touch the container YOU feel hot – the system is					
releasing heat towards YOU! Your thermometer is in the					
SURROUNDINGS so the temperature it reads increases!					

<u>Q#1</u> Identical amounts of heat are applied to 50 g blocks of lead, silver, and copper, all at an initial temp of 25°C. Which block will have the largest increase in temp?

<u>Q#2</u> Determine the energy required to convert 21.1 grams of ice at -6°C to steam at 100°C

Q#3 A sample of barium chloride is increased in temperature by 3.8C when the sample absorbed 2.4×10^2 J of heat energy. Calculate the number of mole sof barium chloride in the sample if its molar heat capacity is 75.1 J/mol•K

<u>Q#4</u> The temperature of a 700.0-g bar of iron decreases by 10.0°C when the iron is plunged into 500.0 g of water. What is the temperature increase of the water, assuming that no heat is lost in the transfer? ($C_{Fe} = 0.45 \text{ J/g}^{\circ}C$)

Q#5 50.0 g of water at 22 °C is mixed with 125 g of water initially at 36 °C. What is the final temperature of the water after mixing, assuming no heat is lost to the surroundings?